Quantification of Mineralized Bone Response to Prostate Cancer by Noninvasive In Vivo μCT and Non-Destructive Ex Vivo μCT and DXA in a Mouse Model
نویسندگان
چکیده
BACKGROUND To compare nondestructive in vivo and ex vivo micro-computed tomography (muCT) and ex vivo dual-energy-X-ray-absorptiometry (DXA) in characterizing mineralized cortical and trabecular bone response to prostate cancer involving the skeleton in a mouse model. METHODOLOGY/PRINCIPAL FINDINGS In vivo microCT was performed before and 10 weeks after implantation of human prostate cancer cells (MDA-PCa-2b) or vehicle into SCID mouse femora. After resection, femora were imaged by nondestructive ex vivo specimen microCT at three voxel sizes (31 micro, 16 micro, 8 micro) and DXA, and then sectioned for histomorphometric analysis of mineralized bone. Bone mineral density (BMD), trabecular parameters (number, TbN; separation, TbSp; thickness, TbTh) and mineralized bone volume/total bone volume (BV/TV) were compared and correlated among imaging methods and histomorphometry. Statistical tests were considered significant if P<0.05. Ten weeks post inoculation, diaphyseal BMD increased in the femur with tumor compared to the opposite femur by all modalities (p<0.005, n = 11). Diaphyseal BMD by in vivo microCT correlated with ex vivo 31 and 16 microm microCT and histomorphometry BV/TV (r = 0.91-0.94, P<0.001, n = 11). DXA BMD correlated less with bone histomorphometry (r = 0.73, P<0.001, n = 11) and DXA did not distinguish trabeculae from cortex. By in vivo and ex vivo microCT, trabecular BMD decreased (P<0.05, n = 11) as opposed to the cortex. Unlike BMD, trabecular morphologic parameters were threshold-dependent and when using "fixed-optimal-thresholds," all except TbTh demonstrated trabecular loss with tumor and correlated with histomorphometry (r = 0.73-0.90, P<0.05, n = 11). CONCLUSIONS/SIGNIFICANCE Prostate cancer involving the skeleton can elicit a host bone response that differentially affects the cortex compared to trabeculae and that can be quantified noninvasively in vivo and nondestructively ex vivo.
منابع مشابه
Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT.
Significant relationships exist between areal bone mineral density (BMD) derived from dual energy X-ray absorptiometry (DXA) and bone strength. However, the predictive validity of BMD for osteoporotic vertebral fractures remains suboptimal. The diagnostic sensitivity of DXA in the lumbar spine may be improved by assessing BMD from lateral-projection scans, as these might better approximate the ...
متن کاملOsteoblastic and angiogenic reactions in prostate cancer bone metastasis models studied by macromolecular DCE-MRI and μCT
Introduction: Osteoblastic bone metastasis is the main cause of morbidity and mortality from androgen-independent prostate cancer. Currently there are very few models that reflect the osteoblastic phenotype of prostate cancer. Recently however, a clinically relevant xenograft model of osteoblastic bone metastases was established from an androgen-independent prostate cancer patient. This model d...
متن کاملEvaluation of high-resolution In Vivo MRI for longitudinal analysis of endochondral fracture healing in mice
Mice are extensively used for experimental bone-healing studies. However, there are few established nondestructive in vivo techniques for longitudinal fracture-healing analysis in mice, including in vivo micro-computed tomography (μCT) and radiography. Importantly, none of the established methods can discriminate between non-mineralized fibrous tissue and cartilage in the soft fracture callus. ...
متن کاملComparison of the Ex Vivo Expansion of UCB-Derived CD34+ in 3D DBM/MBA Scaffolds with USSC as a Feeder Layer
Objective(s): Ex vivo expansion of hematopoitic stem cells is an alternative way to increase umbilical cord blood (UCB)-CD34+ cells for bone marrow transplantation. For this purpose demineralized bone matrix (DBM) and mineralized bone allograft (MBA) as two scaffolds based on bone matrix and stem cell niche, were simultaneously used to enhance the effect of human mesenchymal pro...
متن کاملCombined in vivo optical and µCT imaging to monitor infection, inflammation, and bone anatomy in an orthopaedic implant infection in mice.
Multimodality imaging has emerged as a common technological approach used in both preclinical and clinical research. Advanced techniques that combine in vivo optical and μCT imaging allow the visualization of biological phenomena in an anatomical context. These imaging modalities may be especially useful to study conditions that impact bone. In particular, orthopaedic implant infections are an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010